Rational solutions of an elliptic curve
نویسندگان
چکیده
منابع مشابه
Efficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملFactoring integers and computing elliptic curve rational points
We conjecturally relate via a polynomial-time reduction, a subproblem of integer factoring to the problem of computing the MordellWeil group of an elliptic curve from a special family. This raises an interesting question about the growth of the height of the generators of the above group with respect to the discriminant of the elliptic curve. We gather numerical evidence to shed light on this b...
متن کاملThe Real Field with the Rational Points of an Elliptic Curve
We consider the expansion of the real field by a subgroup of a one-dimensional definable group satisfying a certain diophantine condition. The main example is the group of rational points of an elliptic curve over a number field. We prove a completeness result, followed by a quantifier elimination result. Moreover we show that open sets definable in that structure are semialgebraic.
متن کاملHigher descents on an elliptic curve with a rational 2-torsion point
Let E be an elliptic curve over a number field K. Descent calculations on E can be used to find upper bounds for the rank of the Mordell-Weil group, and to compute covering curves that assist in the search for generators of this group. The general method of 4-descent, developed in the PhD theses of Siksek, Womack and Stamminger, has been implemented in Magma (when K = Q) and works well for elli...
متن کاملAn Overview of Elliptic Curve Primality Proving
Primes are of fundamental importance in number theory, and primality testing is one of the oldest problems in mathematics. Various algorithms have been presented over the past two millenia, ever since Eratosthenes detailed his eponymous sieve in 274 B.C. After important theoretical advances by Fermat, Euler, Legendre, and Gauss in the seventeeth and eighteenth centuries, the rise of computation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Science Bulletin
سال: 2016
ISSN: 0023-074X
DOI: 10.1360/n972016-00926